Tools to bridge the gap between climate science and adaptation:
The SimCLIM integrated modelling system

Richard Warrick
University of the Sunshine Coast, Maroochydore DC QLD 4558, Australia,
Email: rwarrick@usc.edu.au
**CLIMsystems Ltd., Hamilton, New Zealand
Email: Richard@climsystems.com

Presented at
Climate Change Impacts on Water: An International Adaptation Forum,
January 27-29, 2010
Washington DC, USA.
PART 1:

Filling the research gap: the example of the SimCLIM integrated modelling system
SimCLIM

The integrated modelling system for assessing impacts and adaptation to climatic variability and change

www.climsystems.com

R. Warrick
SimCLIM can be used to:

- Describe baseline climates
- Examine current climate variability and extremes
- Assess risks – present and future
- Investigate adaptation – present and future
- Create climate change scenarios (including GCM ensembles)
- Conduct sensitivity analyses
- Examine sectoral impacts (e.g. links to DHI hydrologic models)
- Examine uncertainties
- Facilitate integrated impact analyses
The SimCLIM System

- Scenario selections
- Spatial climatologies
- Time-series climate data
- Model parameter values

Global-Mean Temperature and Sea-Level Projections

Local Climate Means, variability, extremes

Sectoral Impact Models

Coast Agriculture Water Health

Effects

- GCM patterns
- Synthetic changes
- Land data
- Other spatial data

R. Warrick
Multi-scale, open-framework system
Spatial pattern, time-slice analysis
e.g. California Oct-April precipitation

Observed baseline

% change by 2070

20 GCM ensemble, A1B

Time-series projections, for sites

Site specific climate/sea level scenario

Select a GCM Pattern: Ensemble: 20 GCMs Calif
Global projection: SRES A1B

Longitude: -118.80
Latitude: 34.27
Normalised GCM Value (%/°C): -6.70

Climate variable:
- Precip
- Tmin
- Tmean
- Tmax

2070
Analyses of time-series data
Example: change in risk of extreme hot days

Produced using the SimCLIM model
PART 2:

Assessing the risks to domestic rainwater harvesting systems from climate variability and change in Queensland, Australia
SimCLIM Water Tank Model

Rain water tank model

Model inputs:

- Daily water consumption (liters): 550.0
- Water tank size (liters): 90000
- Water catchment area (m²): 290.0
- Initial water storage(%): 50.0
- Length of critical dry period (days): 2

Rainfall Change
- In percentage (%): 0.00
- In absolute amount (mm): 0.00

Model Output:

<table>
<thead>
<tr>
<th>Output</th>
<th>Weather date</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>The longest dry period (days)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>The number of dry period larger than critical dry period</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Click on the table for graphing.

Run Model | GEV Tool | Cancel
SimCLIM Water Tank Model

Initial model run
Variable: Daily rainfall
Station: Brisbane Aero
Time-series: 1961-1990

Subsequent runs
Variable: Daily rainfall
Station: 41 sites
Time-series: 1961-1990
Scenario of climate change

Percent change in April-September rainfall in 2050

Based on an eight-GCM ensemble, AIB emission scenario and mid-range climate sensitivity
Spatial patterns of risk:
Frequency of empty tanks

Failure every:
- >5 yrs
- 2-5 yrs
- 1-2 yrs
- >1 yrs

On average

Current climate

2050
Assessing adaptation options to reduce the risks

<table>
<thead>
<tr>
<th>SITE: University of Queensland, Gatton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Adaptation</td>
</tr>
<tr>
<td>Without climate change</td>
</tr>
<tr>
<td>With climate change</td>
</tr>
<tr>
<td>With Adaptation and Climate Change</td>
</tr>
<tr>
<td>Additional tank storage</td>
</tr>
<tr>
<td>Reduce daily consumption</td>
</tr>
<tr>
<td>Add catchment area</td>
</tr>
<tr>
<td>Raise critical threshold level</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SITE: Aughamore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Adaptation</td>
</tr>
<tr>
<td>Without climate change</td>
</tr>
<tr>
<td>With climate change</td>
</tr>
<tr>
<td>With Adaptation and Climate Change</td>
</tr>
<tr>
<td>Additional tank storage</td>
</tr>
<tr>
<td>Reduce daily consumption</td>
</tr>
<tr>
<td>Add catchment area</td>
</tr>
<tr>
<td>Raise critical threshold level</td>
</tr>
</tbody>
</table>
CONCLUSIONS

- Research need: closing the gap between high-level climate science and on-the-ground adaptation
- In particular, there is a lack of user-friendly and user-accessible models and tools for bridging the gap
- Adaptation options to reduce the risks from climate variability and change can be assessed through simulation using integrated model systems like SimCLIM
Thank you.....