Key Technological Issues of Designing Flood Control Schemes of the Yellow River

Liu hongzhen

Yellow River Engineering Consulting Co., Ltd.
提纲 Outline

Introduction

Challenges

Research Procedures

Flood Control Schemes of the Upper Yellow River

Flood Control Schemes of the Middle and Lower Reaches

Conclusions
研究背景

Introduction
The problems of floods control and sediments management are complicated in the Yellow River catchment, and there are significantly serious flood and sediment disasters in the history. In order to reduce the flood losses, flood control projects have been built, including embankments, reservoirs, and flood storage and detention projects. How to utilize the flood control projects, and perform reservoirs and flood storage and detention projects operation scientifically, so as to reduce the flood losses, is the main target of the project.
1.1 Flood sources and characteristics

From the upstream of the Lanzhou station

- Characteristics: Long duration, High water volumes

From Toudaoguai to Sanmenxia

- Characteristics: Big peakflow, High sediment concentration

From Sanmenxia to Huayuankou

- Characteristics: Big peakflow, Short forecast intervals
1.2 干流重点防洪河段

Key sections for flood control of the mainstream

Ningxia-Inner Mongolia Reach
(5000m³/s~6000m³/s)

Lanzhou city
(6500m³/s)

Aishan
(11000 m³/s)

Huayuankou
(22000 m³/s)
1.3 防洪工程现状

The status quo of flood control projects

The upper Yellow River:

- Embankments
- Longyangxia reservoir
- Liujiaxia reservoir
The middle and lower Yellow River:

- Upper-blocking, Lower-draining, Both banks divided-blocking.

Flood control projects system

- Upper-blocking
- Lower-draining
- Both banks divided-blocking
1.4 近年来防洪形势变化

The changes of flood control situation in recent years

- Affected by the use of the Longyangxia and Liujiangxia reservoir, the flood decreased in Ningxia-Inner Mongolia reach, and the flow carrying capability reduced to 1500m3/s from 4000m3/s in 1980s.

- Characteristics of floods of the middle and lower Yellow River have changed significantly recently. The changes lie in the decreases of flood frequencies, flood magnitudes, flood durations, and etc.
The flow carrying capability of the lower Yellow River reduced to 1800 m³/s in 2002 from about 5000 m³/s in 1980s. And the serious situation of the Secondary Perched River phenomenon brings serious threat to flood control.
The floodplain areas of the lower Yellow River, where nearly 1,900,000 people live, are not only channels for flood flowing but also the homestead of these 1,900,000 people. And the floodplain areas of the lower Yellow River are planned as important flood detention and sediment deposition areas. Therefore, in order to reduce the inundation losses of the floodplain areas, control operation for common and small floods turns to be very important.
面临的挑战

Challenges
1. How to perform the Longyangxia and Liujiaxia reservoirs flood control operation, considering flood control of the Ningxia-Inner Mongolia reach?

2. How to perform the Xiaolangdi reservoir flood control operation for common and small floods during its sediment-retaining and sedimentation period? Considering both flood control and sediment reduction?
3. How to analyze the hydrographs and characteristics of common and small floods of Huayuankou Station under current projects condition, to provide the basis for reservoir operation?

4. What is the joint operation modes of the flood control projects system, subjecting to condition changes?
3

研究思路
Research Procedures
According to the sources of flood and distribution characteristics of flood control projects, the upper Yellow River and the middle and lower Yellow River were studied separately.

The upper Yellow River

The main study is that whether the Longyangxia and Liujiaxia reservoirs can give consideration to flood control of Ningxia-Inner Mongolia regions.

The middle and lower Yellow River

The key research is that the operation modes of Xiaolangdi reservoir to the common and small floods.
4

上游方案研究

Scheme Research of the Upper Yellow River
The flood control capacity under 2594m (design limited water level) of the Longyangxia reservoir can be used to provide the flood-control safety of the Ningxia-Inner Mongolia reaches.

In most years, the Longyangxia and Liujiaxia reservoirs can only give partial consideration to the flood-control safe of the Ningxia-Inner Mongolia reaches.

If the water level of the Longyangxia reservoir at the beginning of the flood season has been reached at 2588m, the joint operation modes of the Longyangxia and Liujiaxia reservoirs, can ensure the outflow of the Liujiaxia reservoir less than 2500m3/s for floods with 10 years recurrence periods.
5

Schemes of the Middle and Lower Yellow River

下游方案研究
5.1 Characteristics analysis of common and small floods at Huayuankou station under influences of current projects

5.1.1 Influences of current projects on floods at Huayuankou station

- Regional flood composition analysis
- Reservoir operation
- Rainfall-runoff analysis

floods at Tongguan station under the influences of Longyangxia and Liujiaxia reservoirs and water conservation projects

Inflows to Sanmenxia

Flood hydrograph of Huayuankou station

Analyze the influences of water conservation projects between Tongguan and Huayuankou stations
Magnitudes of common and small floods was defined as between 4000m3/s and 10000m3/s at Huayuankou station.
5.1.3 Characteristics of common and small floods

1. The occurring probability of common and small floods is about twice a year.

2. Floods with peak flow magnitudes between 8000 m3/s and 10000 m3/s mainly occur in July or August. Peak flow magnitudes of floods occurring in September or October are usually lower than 8000 m3/s.
About 80% of main peak flow water volumes of common and small floods are sourced from basins upstream of Tongguan station.

The peak flows within Xiaolangdi-Huayuankou interval of floods sourced mainly from Sanmenxia-Huayuankou interval, are usually higher than 4000m3/s.

The flood magnitudes at Tongguan station decrease and the proportion of hyperconcentrated floods increase. Almost all of the larger floods are sediment hyperconcentrated.
5.2 滩区淹没分析

Inundation loss analysis of floodplain areas

Inundation loss of floodplain areas is lowest with peak flows of Huayuankou station smaller than 6000 m³/s, and increase sharply along with peak flows increase from 6000 m³/s to 8000 m³/s. But the increased proportion is few with peak flows increase from 8000 m³/s to 22000 m³/s.
5.3 中小洪水防洪运用方式研究
Flood control operation modes for common and small floods

5.3.1 小浪底水库防洪运用阶段划分
Phases division of flood control operation

Based on sedimentation amount and flood control storage capacity below 254m, the flood control operation period of Xiaolangdi can be divided into three phases:

<table>
<thead>
<tr>
<th>Period</th>
<th>Sedimentation amount ($10^8 m^3$)</th>
<th>Flood control storage capacity below 254m ($10^8 m^3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The first</td>
<td>22～42</td>
<td>≥ 20</td>
</tr>
<tr>
<td>The second</td>
<td>42～60</td>
<td>7～20</td>
</tr>
<tr>
<td>The third</td>
<td>60～75.5</td>
<td>0～7</td>
</tr>
</tbody>
</table>
5.3.2 中小洪水防洪运用指标分析

Index analysis of control operation for common and small floods

➢ Requirement analysis of control storage capacities for common and small floods

The flood control storage capacities of Xiaolangdi reservoir to control different magnitudes of floods were obtained

<table>
<thead>
<tr>
<th>Peak flow of floods at Huayuankou station</th>
<th>Control the peak flows to be at Huayuankou station</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4000m³/s</td>
</tr>
<tr>
<td>10000m³/s</td>
<td>18</td>
</tr>
<tr>
<td>8000m³/s</td>
<td>10</td>
</tr>
<tr>
<td>7000m³/s</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Results show that:
the bigger the magnitudes of common and small floods at Huayuankou station are, the smaller the peak flows should to be controlled and the bigger the required flood control storage capacities should be.
Control discharge for common and small floods

The flood control discharges at Huayuankou station should be adjusted as the sedimentation amount varies. In the three phases of flood control operation, the flood control discharges should be 4000m³/s, 5000m³/s or 6000m³/s respectively.
After the comprehensive comparison of the two operation programs, the final recommendation is the open vent of high sediment concentration flood as often flood operation.
Major floods in the upstream of the Sanmenxia reservoir

The characteristics:

- Big peakflow
- High sediment concentration
The free discharging first and controlling discharging later operation mode of the Sanmenxia reservoir should be used when the recurrence of floods reaches or exceeds the standard of 50 years recurrence.
Firstly, following the flood control operation modes; when the water level of the reservoir is about to 254m, to control the discharge of Huayuankou less than 10000m3/s; when the water level of the reservoir is about to 263m～266.6m, increase the outflow of the reservoir.
when Xiaolangdi reservoir increase the outflow, the Dongpinghu flood detention project is put into operation, the operation probability of which is about of 100～200 recurrence periods.
Major floods in the downstream of the Sanmenxia reservoir

The characteristics:

- Short forecast intervals
- Low sediment concentration
Xiaolangdi reservoir should take control operation modes for common and small floods firstly; once the reservoir storage reaches the flood control storage capacity or the discharge of the xiaolangdi-Huayuankou interval is more than or equal to 9000m3/s, Xiaolangdi reservoir should decrease the outflow to the hydropower discharge.
When the water level of the Xiaolangdi reservoir is about to 263m～269.3m, the outflow of the Sanmenxia reservoir is control the same as the outflow of the Xiaolangdi reservoir, the operation probability of which is about of about 100～200 recurrence periods.
Luhun, Guxian and Hekoucun reservoirs will turn into flood control modes for the lower Yellow River when the forecasted peak flows reach 12000 m3/s at Huayuankou station.
When the discharge of Sunkou is more than 10000 m³/s, the Dongpinghu flood detention project is put into operation, the operation probability of which is about of 20~30 recurrence periods.
When the flood is out of flood control standard, the Beijindi flood detention project is put into operation.
6

Conclusions
1. In most years, the Longyangxia and Liujiaxia reservoirs can only give partial consideration to the flood-control safe of the Ningxia-Inner Mongolia reaches.

2. Under the influences of current projects, the magnitude of normal and small flood at Huayuankou station is about 4000m³/s ~ 10000m³/s.
Inundation loss of floodplain areas is lowest with peak flows of Huayuankou station smaller than 6000m3/s.

As the increase of the sedimentation amount of the Xiaolangdi reservoir, the flood control discharge of common and small floods switch from 4000m3/s to 5000m3/s~6000m3/s. Hyperconcentrated vent open with non-hyperconcentrated control vent is recommended.
Joint operation mode of downstream flood controlling system is as follows.

➢ For flood mainly coming from upper-streams, Sanmenxia is taken firstly, then Xiaolangdi reservoir operate, and the Dongpinghu detention project divide the flood when the discharge at Sunkou station is more than 10000 m3/s.

➢ For flood mainly comes from downer-streams, Xiaolangdi reservoir is put into controlling operation firstly. And then Sanmenxia, Luhun, Guxian and Hekoucun reservoirs are taken. When the discharge of Sunkou is more than 10000 m3/s, the Dongpinghu flood detention project is put into operation; and when the flood is out of flood control standard, the Beijindi flood detention project is put into operation.
Thank you!