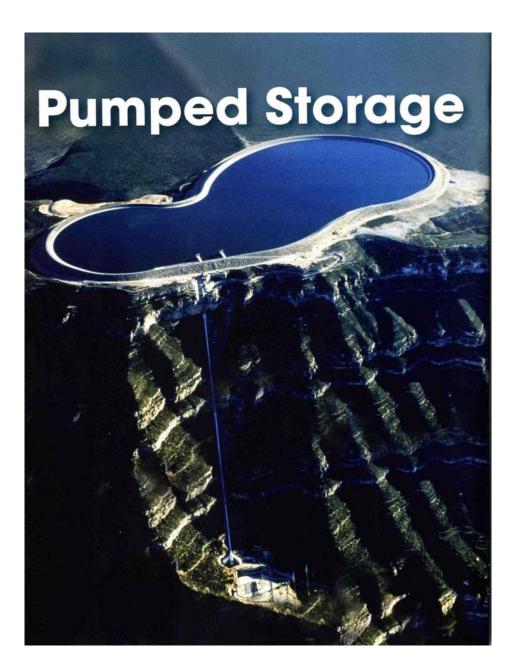
INTRODUCING PUMPED STORAGE IN LEBANON: TOWARDS A PROSPECTIVE NATIONAL MASTER PLAN


by Adib Geadah

Senior Hydraulic Engineer and Consultant, P.O.Box 13- 6195, Beirut, 1102-2801, Lebanon

International Seminar on River Basin Management and Cooperation In the Euro-Mediterranean Region BEIRUT, LEBANON – 6-9 October 2009

TYPICAL PUMPED - STORAGE SCHEME

Bituminous Lining Systems - Pump Storage Schemes

ENERGY SECURITY CHALLENGE : NEED FOR A GLOBAL RESPONSE

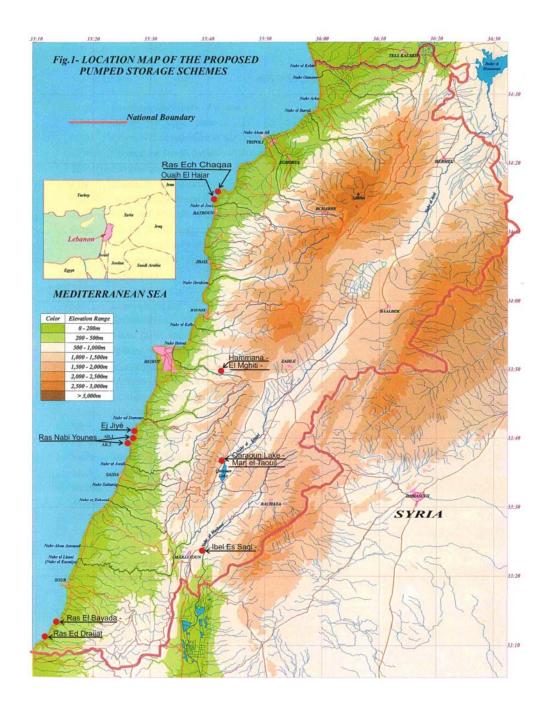
- THE FINANCIAL CRISIS HITS THE GREEN SOLUTIONS (E.G.PUMPED STORAGE)
- ➢ THE VOLATILITY IN OIL PRICES IS CREATING GREAT UNCERTAINITY
- ➢ IN AN ECONOMIC DOWNTURN , CAPITAL IS DIRECTED TO PROJECTS THAT ARE SEEN AS HIGHER PRIORITY THAN GREEN ENERGY
- THE DOWNTIME COULD OFFER OPPORTUNITY FOR LOOKING AT WHAT WE NEED GOING FORWARD VIA INNOVATION
- ➢ THE PUBLIC AND PRIVATE SECTOR SHOULD WORK TOGETHER AND THERE IS NEEDS TO BE MORE DIRECTION AT THE NATIONAL AND GLOBAL LEVEL
- > ENERGY SECURITY BY:
 - ENSURING THAT SUPPLIES AND INFRASTRUCTURE ARE RESENT NOW ,
 - PROVIDING ENOUGH POWER GOWING FORWARD AS DEMAND FOR ENERGY INCREASES,
- A GLOBALLY CO-ORDINATED RESPONSE IS THE ONLY WAY TO TACKLE THIS GLOBAL PROBLEM.THE CHALLENGE IS:

NATION - WIDE WATER RESOURCES MANAGEMENT V/S RIVER BASIN MANAGEMENT.

WHY PUMPED STORAGE FOR LEBANON?

- ➢ A CLEAN RENEWABLE ENERGY POTENTIAL WHOSE TIME HAS COME NOW
- A SPECIAL CLASS OF HYDROELECTRIC FACILITIES , THE VALUE OF WHICH IS BEING RECOGNISED WORLD WIDE
- ➢ WELL- PROVEN , COST- EFFECTIVE AND UP-TO-DATE TECHNOLOGY
- PUMPED STORAGE PLANTS ARE THE "RACE CARS" AMONG POWER GENERATION FACILITIES : DYNAMIC AND RAPID REPONSE CAPABILITIES FOR KEEPING THE ELECTRICAL GRID STABLE AND RELIABLE
- ENERGY TRADING BY PUMPING IN OFF-PEAK HOURS, USING LOW- TARIFF THERMAL ENERGY, AND GENERATING IN PEAK TIMES WITH GOLDEN HIGH-TARIFF (VALUE –ADDED)
- BETTER ACCOMMODATION OF INTERMITTENT POWER SOURCES : ABILITY TO RAMP UP OR DOWN HUNDREDS OF MW'S IN SECONDS
- PROVISION OF PEAKING POWER AT COMPETITIVE COST AND IMPROVED EFFICIENCY
- IMPROVEMENT OF TRANSMISSION GRID STABILITY AND FLEXIBILITY , INCLUDING MODULATING GRID FREQUENCY AND PHASE
- PROVIDING EMERGENCY RESERVES (STAND BY HOT RESERVE GENERATING FACILITY).

PUMPED STORAGE AS THE BEST OPTION FOR SUPPORTING OTHER RENEWABLE ENERGY SOURCES


COMPARAISON OF THE REGULATION CAPACITY OF SEVERAL ELECTRICITY GENERATION TECHNOLOGIES

Type of Electricity Generation Regulation Capacity Criteria	Conventional Hydro	Pumped Storage
Start –up and Shut- Down Capacity	 The most flexible without a significant detrimental effect on the equipment's service life Limitation due to its connection to the hydraulic management of rivers. 	Same characteristics as conventional hydro . Their operation is not limited by exploitation of the basin in which they are located . Their power is always available even during dry periods
Regulation Velocity (in % of load per minute)	High (100%)	After conventional hydro , the best choice to firm the variability of renewable energy sources
Technical Minimum Load (in % of Maximum Load)	Low (<10%) regulation capacity >90% of rated power	Power from pumped storage is available without the restrictions inherent in conventional hydro.
Fuel Cost	Zero	Disadvantage : cost of pumping = price of the electricity divided by the efficiency of the cycle (~75%)

COMPARISON OF THE REGULTION CAPACITY OF SEVERAL ELECTRICITY GENERATION TECHNOLOGIES

(Continued)	
-------------	--

Type of Electricity Generation Regulation Capacity Criteria	Conventional Thermal	Open Cycle Gas	Combined Cycle
Start –up and Shut- Down Capacity	Limited (substantial amount of energy , substantial cost, reduction of the service life of the plant)	Significant flexibility for continuous start ups and shutdowns	Flexibility in- between conventional thermal and open cycle gas (more robust than conventional thermal to perform continuous start ups and shut downs)
Regulation Velocity (in % of load per minute)	Limited (high thermal inertia) (1%)	Relatively rapid power variations (4%)	Slightly lower than open cycle turbines (higher thermal inertia) (2.5%)
Technical Minimum Load (in % of Maximum Load)	Acceptable (45%) regulation capacity < 55% of rated power	Limited (60%) regulation capacity < 40% of rated Power	Medium (50%) regulation capacity < 50% of rated power
Fuel Cost	Substantial	High (>40% than combined cycle)	Moderate variable cost

OVER VIEW OF THE SURFACE WATER RESOURCES IN LEBANON

> Typically Mountain's Country Along the Mediterranean Sea (10,452 km2)

➤Considerable Spatial Diversity in Terms of:

- Topography (0-3,090 m a.s.l)
- Rainfall (200-1,300 mm/year/region)
- Patterns of Land Use

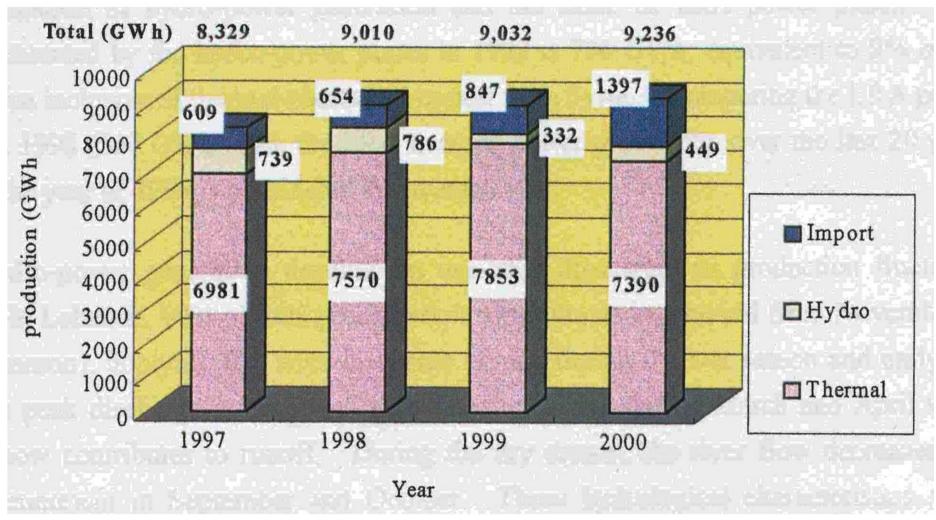
≻17 Major Perennial Rivers

Remarkable Seasonality in Rainfall (only 80 rainfall days / year)

Resulting in a Significant Stress on Available Surface water Resources

Total Average Annual Runoff : 3,094 Million m3

Surface Water Development Potential:


- by Direct Intake from Rivers : 11.3%
- by Storage Facilities by Dams and Hill Lakes : 87.7%

- TOTAL : 862 MCM/ Year

EXISTING POWER GENERATION PLANTS IN LEBANON

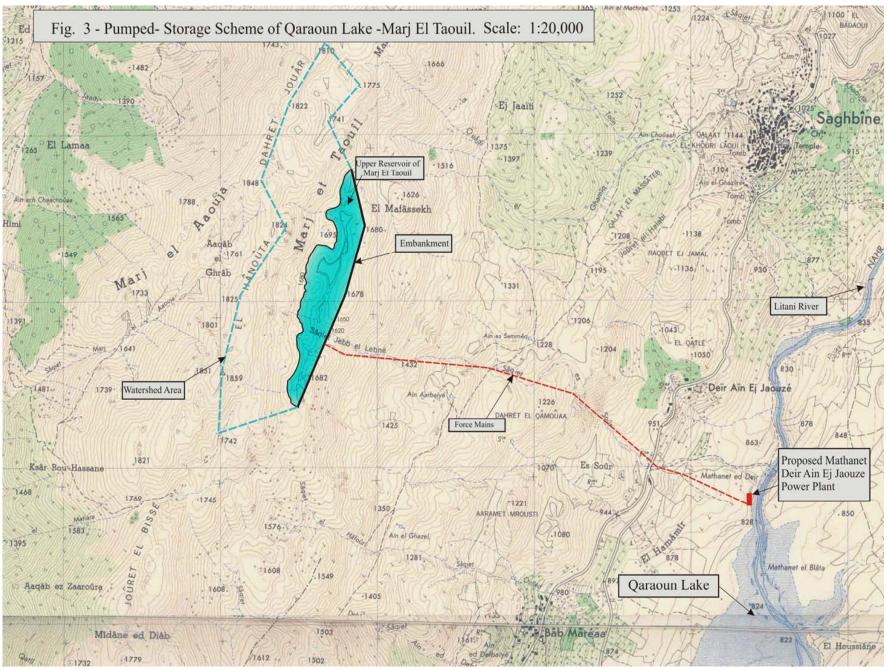
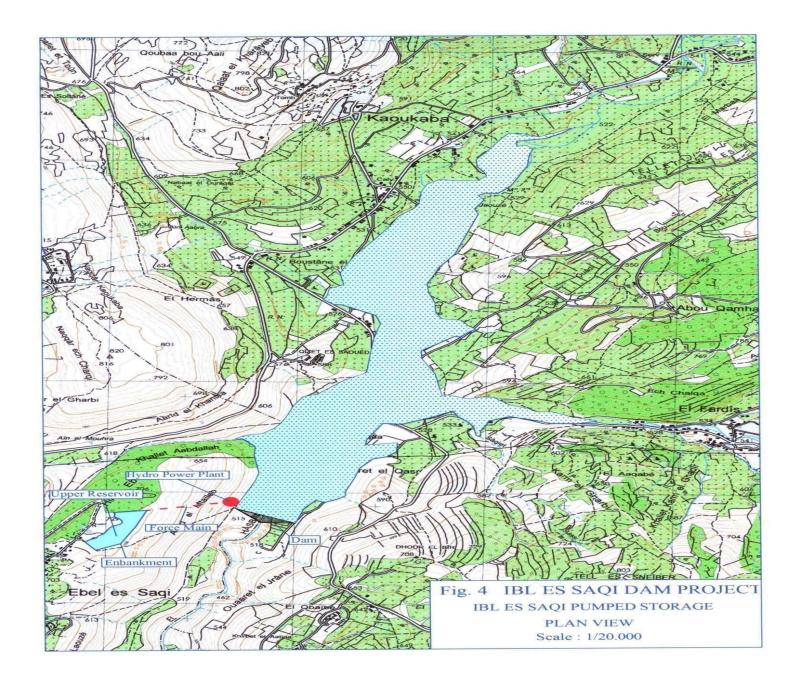
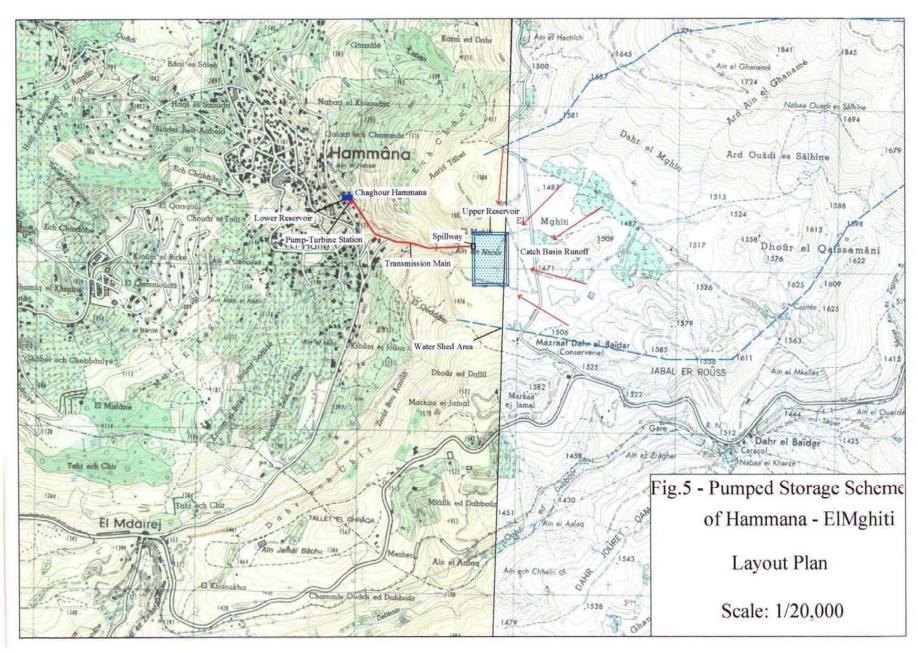

TYPE	COMPANY/ STATUS	RIVER/ TURBINES	PLANT NUMBER (N)	NOMINAL CAPACITY (MW)		
	EDL/ Semi-Public	DAMOUR	1	13.2		
	KADISHA / Semi-Public	ABOU ALI	4	21.3		
HYDRO-	LRA / Semi-Public	LITANI/AOUALI	3	190.0		
POWER	NAHR EL BARED/ Private	EL BARED	2	17.2		
	SPHE / Private	IBRAHIM	3	30.1		
		TOTAL	13	271.8		
THERMAL- POWER	EDL/ Semi-Public	FUEL STEAM GAS COMBINED CYCLE	3 1 2 2	997.7 65.0 140.0 870.0		
		TOTAL	8	2,072.7		
	GRAND TOTAL 21 2,344.5					

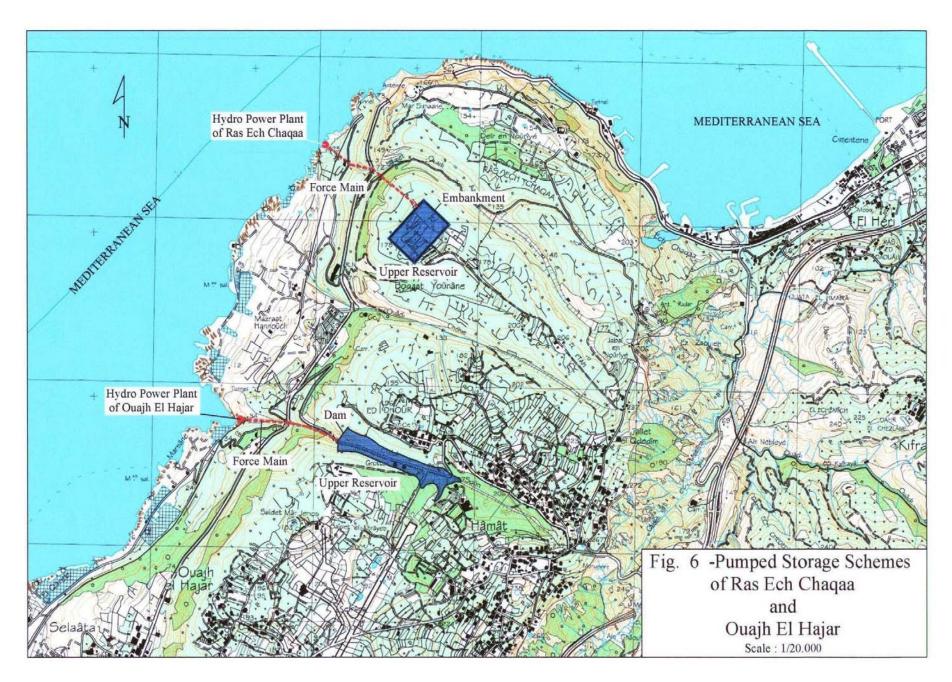
Fig 2 - Recent Repartition of the Annual Production and Import of Energy in Lebanon

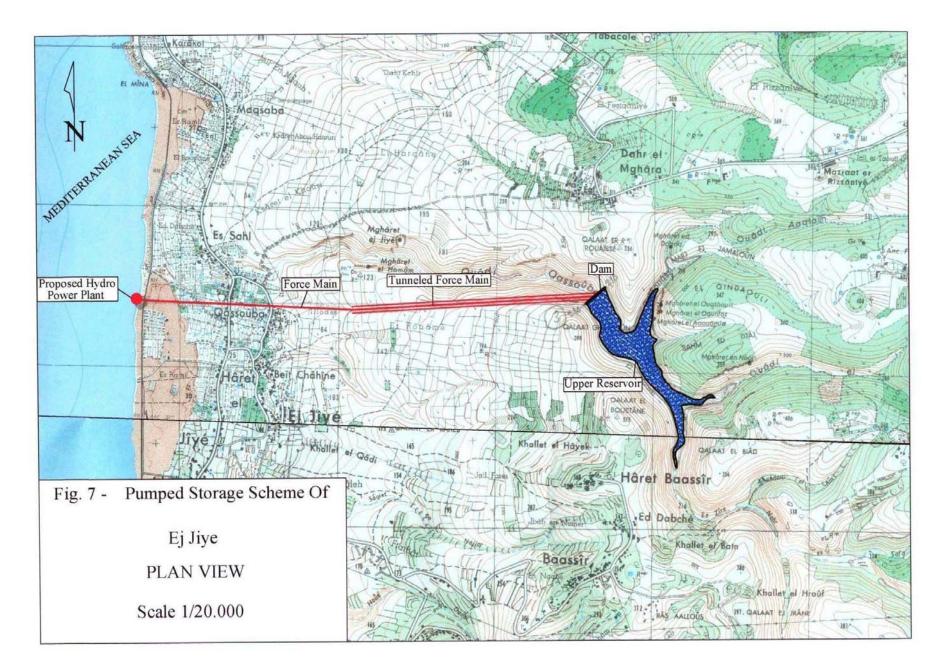
PRESENT PUBLIC ELECTRICITY TARIFFS IN LEBANON AND ASSUMED PUMPED – STORAGE COSTS

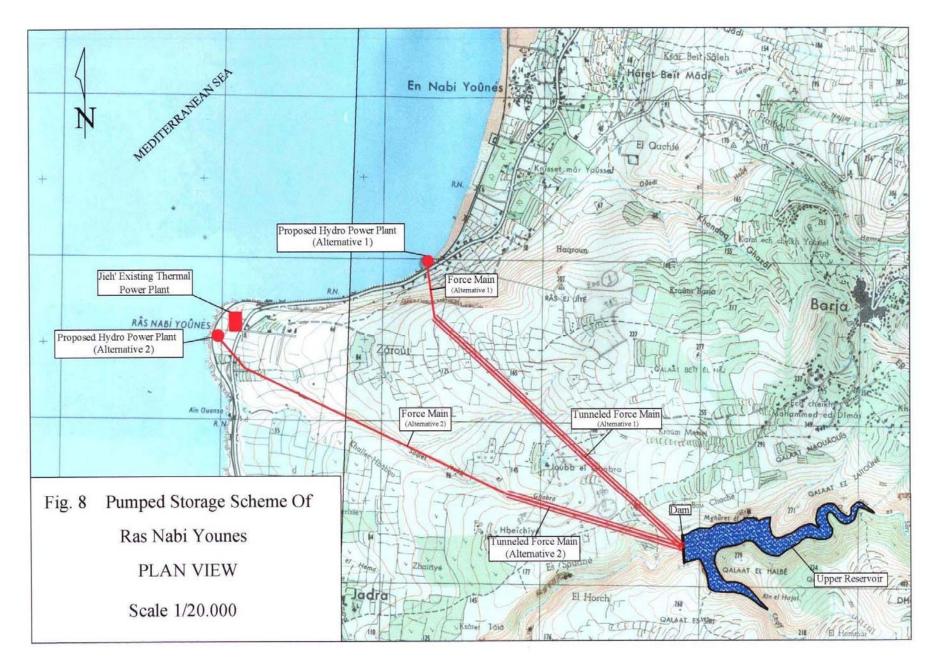
- PRESENT EDL TARIFFS (Base Rate Excluding Vat and Taxes)
 - RESIDENTIAL : 35-200 LBP/KWH = 2.3 13.3 USÇent/KWH
 SMALL INDUSTRY : 115 LBP/KWH = 7.7 USÇent/KWH
 AGRICULTURE : 115 LBP/KWH = 7.7 USÇent/KWH
 PUBLIC FACILITY : 140 LBP/KWH = 9.3 USÇent/KWH
 - •
- ASSUMED PUMPED STORAGE COSTS (Base Rate Excluding Vat and Taxes)
 - OFF PEAK PUMPING : 75 LBP/ KWH = 5.0 USÇent/KWH
 - PEAK GENERATING : 200 LBP/ KWH = 13.3 USÇent/KWH

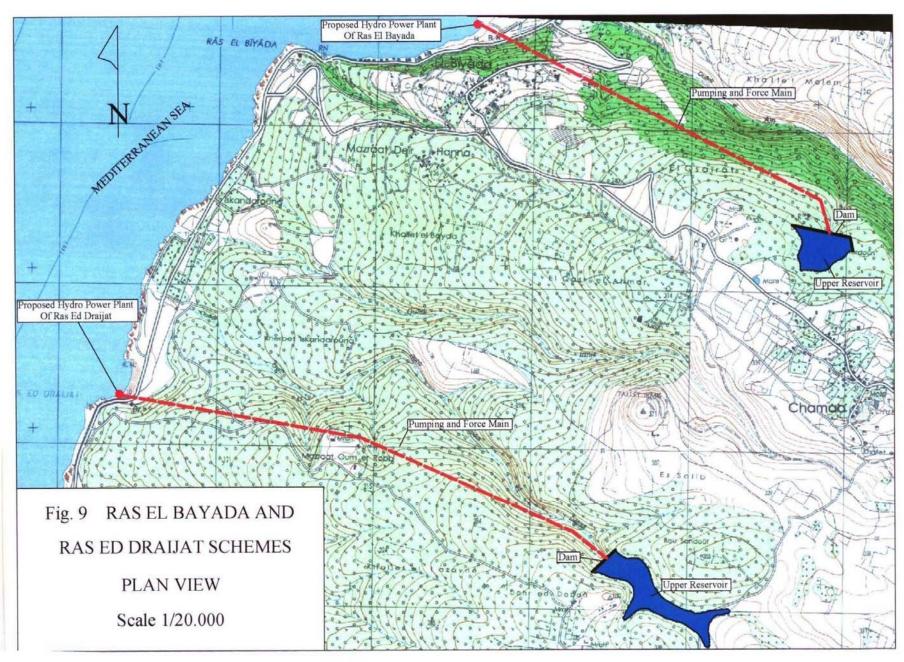



TYPICAL PUMPED STORAGE SCHEME OF QARAOUN LAKE-MARJ ET TAOUIL PROJECT FEATURES


HYDROLOGY AND RESERVOIR	PLANT DATA		
Upper ReserCatchment's Area (km²)1.13Reservoir Max surface Area (km²)0.26High Water Level (m a.s.l.)1678Average Water Level (m a.s.l.)1655Low Water Level (m a.s.l.)1630Dam Height(m)50Effective Depth(m)48Gross Storage (10^6 m^3)1.6Active Storage (10^6 m^3)1.4Average River Discharge (m³/s)()	voir Lower Reservoir 1,545 12.6 862 835 820 63 42 220 160 9.34	Installed Capacity (MW) -Pumping Mode -Generating Mode Max.Pumping Discharge (m ³ /s) Max.Generating Discharge (m ³ /s) Force Mains: 4*DN 2,200mm (ml) Steel , PN 80-60-40 bars Rated Net Head (m): -Pumping Mode -Generating Mode N° of Units (N) Reversible Pump-Turbines, FRANCIS , 2- Stages	: 560 : 388 : 48 : 64 : 2,940 : 838 : 776 : 4


TYPICAL PUMPED STORAGE OF QARAOUN LAKE- MARJ ET TAOUIL BASE DEVELOPMENT COST AND OPERATION INDICATORS


BASE DEVELOPMENT COST		OPERATION INDICATORS
(MILLION USD)		
Upper Reservoir	: 16	Daily Max : Off-Peak Pumping Hours : 8
Acess Roads	: 5	Daily Max : Peak Generating Hours : 6
Force Mains	: 33	Average Annual Operation Days : 300
Head Race, Tail Race, Shafts' Struc	-	Annual Pumping Consumption (GWH) :1,334
tures and Water Hammer Protection	: 15	Annual Generation Production (GWH) : 713
HPP	: 446	Annual Pumping Cost (Million USD) : 67
Hv Transmission Lines and Transfor-		Annual Generation Sales (Million USD) : 95
mers' Stations	: 18	Annual Gross Profit (Million USD) : 28
Expropriations and Rights-Of- way	: 4	Capital Cost Recovery Period/
Full Engineering Services	: 28	Estimated Pay Back Period (year) : 20
TOTAL	565	



LEBANON'S PUMPED STORAGE MASTER PLAN DATA OF IDENTIFIED TYPICAL POTENTIAL PROJECTS

Category/Type	Project	:	Generating Capacity (MW)	Expected Annual Peak Generation (GWH)	Base Investment Cost (Million USD)	Estimated Pay Back Period (Year)	Rank
I-Inland / Qaraoun Lake / Litani River	Qaraoun Lake– Marj Et Taouil		388	713	565	20	2
II-Inland / River Basin Dam	Hasbani Riv Es Saqi D		21	37	34	31	4
III-Inland/ Perennial Spring – Hill Lake	Hammana- E	l Mghiti	12	9	31	35	5
	Ras Ech Ch	aqaa	30	54	50	37	5
	Ouajh El H	lajar	33	60	52	16	1
IV- Sea Shore / Coastal	Ej Jiye		225	405	344	16	1
Cliffs	Ras Nabi	Alt.1*	234	421	348	18	1
	Younes	Alt.2	221	398	351	23	3
	Ras El Bayada		90	163	135	18	1
Ras Ed Draija		aijat	140	252	219	20	2
TOTAL		1,173	2,114	1,778	16-37	()	

PROSPECTIVE MASTER PLAN OF PUMPED STORAGE

	PERIOD 2010-2015	PERIOD 2016-2022	TOTAL
TARGET CAPACITY IN THEGENERATING MODE(MW)	613	560	1,173
N° OF PLANTS (N)	2	7	9
BASE INVESTMENT NEEDS (MILLION USD)	909	869	1,778
PREPARATION OF THE MASTER PLAN (MILLION USD)	5	4 (UP DATE)	9

FINANCIAL ENGINEERING TOOLS AND PACKAGES

PARIS-3 FUNDS AND SOFT LOANS
 LOI- PROGRAMME FOR 10 YEARS

► RESPECTIVE PUBLIC BONDS FOR 10 YEARS

>PPP : PRIVATE PUBLIC PARTNERSHIP :

PARTIAL INCORPORATION AND PRIVATIZATION OF EDL IN CONFORMITY WITH REGULATION LAW Nº 462/2002

➢BOT , BOOT , ….

► EPC (ENGINEERING , PROCUREMENT , CONSTRUCTION)

>CARBON TRADES (KYATO PROTOCOL)

FLEXIBLE MECHANISMS TO DEVELOP JOINT IMPLEMENTATION PROJECTS BETWEEN LEBANON AND THE EU COUNTRIES.

THANK YOU