Being Cost effective in preventing water stress TerAGUA- The Castelo do Bode watershed approach

Maria Vale

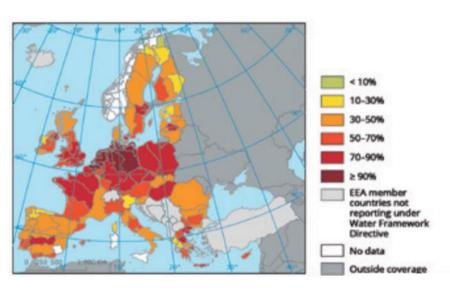
Directorate General and Territorial Development

19th Europe-INBO International Conference for the implementation of European water directives Wednesday 8th to Friday 10th of December

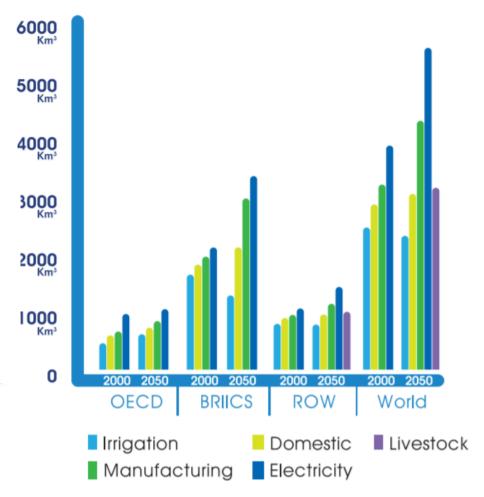
INBO -2021

1. Main Goal

To reduce water stress increasing B/C ratio


- Reduce/Prevent water contamination Understand water stress induced by human activities
- Align water and territorial management with nutrients intake within the water cycle
- Understand SSD, SST, P, N, CQO, CBO watershed intake in the context of human activities - LOCATION
- Increase efficiency and equity regarding cost benefits allocation —planning, implementation, monitoring and review — responsible collaboration
- Align the different acting boards Institutional, socioeconomic, environmental though Circular economy and an ecosystems services perspective
- Reducing contamination risk Research and Innovation— the relevance of Location improve efforts to.....
 - Align economic growth with lower pressure over resources Water/BGQ cycles
 - Detail/ Priority Drinking water preservation

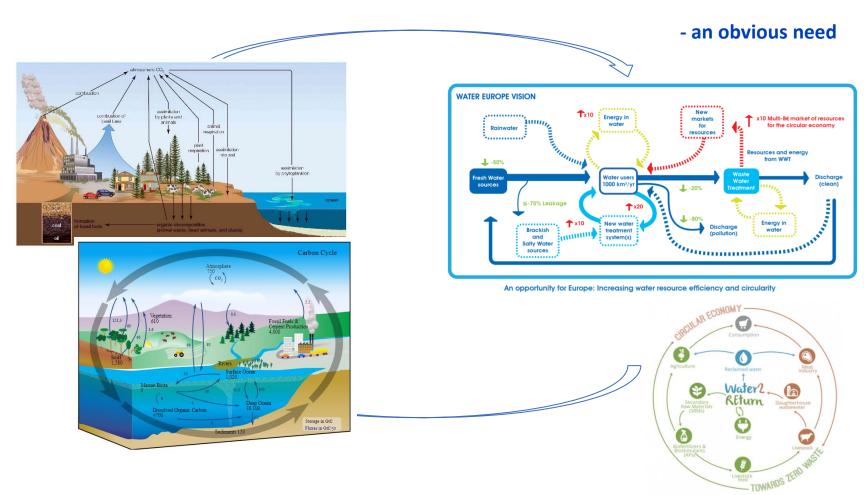
2. Preventing/reducing water stress preventing contamination risk- increasing B/C ratio


Business as usual... water demand increase and water quality decreases

Percentage of classified water Bodies with less than good ecological status or potential in rivers / lakes.

Source: Multiple Waters for Multiple Purposes and Users, Water Europe, (04/2020); EEA

Global water demand in 2000 and 2050


Source: water Europe, adapted from OCDE Environmental Outlook to 2050

2. Preventing/reducing water stress - preventing contamination risk Integrating BGQ cycles with water cycle

The water and Biogeochemical cycles /human activities integration

Water/Nutrient/anthropogenic related consumption and discharge permanent monitoring, review and integration

3. Approach- TerAgua Collaborative platform Towards sustainable Water management- contamination risk assessment

Risk level = impact X occurrence probability

	6x4 RISK MATRIX							
Fre que nt	24	18	12	6				
р ———	Very High	Very High	High	high				
	20	15	10	5				
•	Very High	High	High	Moderate				
b Possible	16	12	8	4				
a Possible	Very High	High	Moderate	Moderate				
b Remote	12	9	6	3				
i Kemote	High	Moderate	Moderate	Low				
I Unlikely	8	6	4	2				
i Unlikely	High	Moderate	Moderate	Low				
t Dara	4	3	2	1				
Rare	Moderate	Moderate	Low	Low				
	4	3	2	1				
	Catastrofic	Serious	Relevant	Low				
IMPACT								

Risk level	Definition
Low	Acceptable risk level. The control measures are suficiente.Require constant monitorement and review
Moderate	Not desirable. A plan of action should be developed, if possible, for the implementation of supplementary control measures in accordance with the risk priorities.
High	Tolerable with an organization's commitment at the highest level and after cost / benefit assessment. It implies the development of a scheduled action plan for the implementation of reasonable measures required to reduce risk.
Very Hight	Not acceptable. It implies the suspension of the activity / process until effective control measures are implemented that reduce the level of risk.

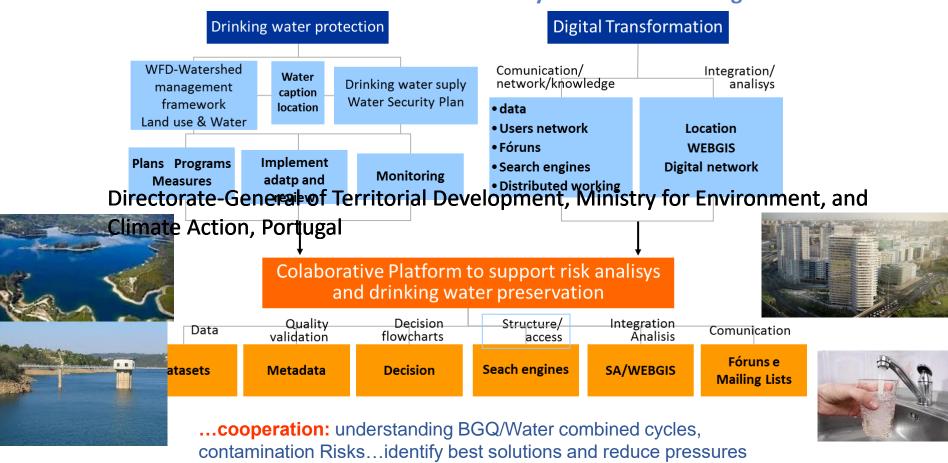
Adapted de: Shuttleworth, (2017).

This isolated approach can fil evaluating risk.

Therefore it must integrate and be combined with a broader perspective.

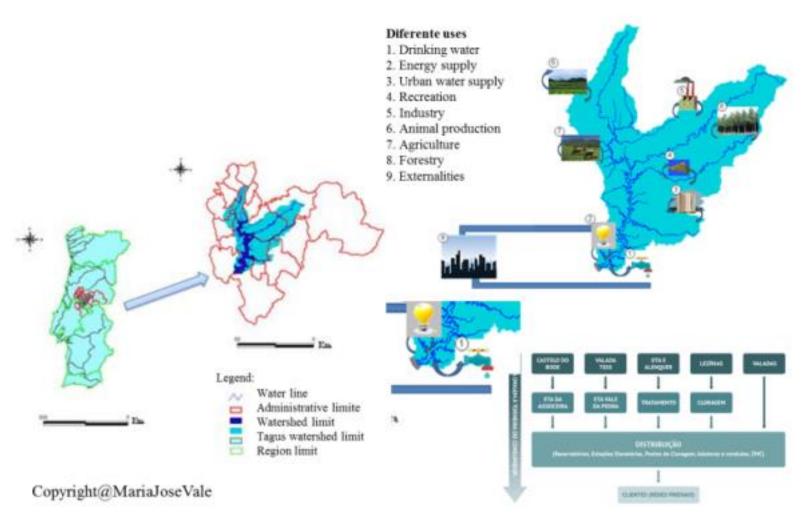
3. Approach - TerAgua Collaborative platform for Water Nitrogen contamination risk assessment

Collaborative Spatial Data Infrastructure in order to:

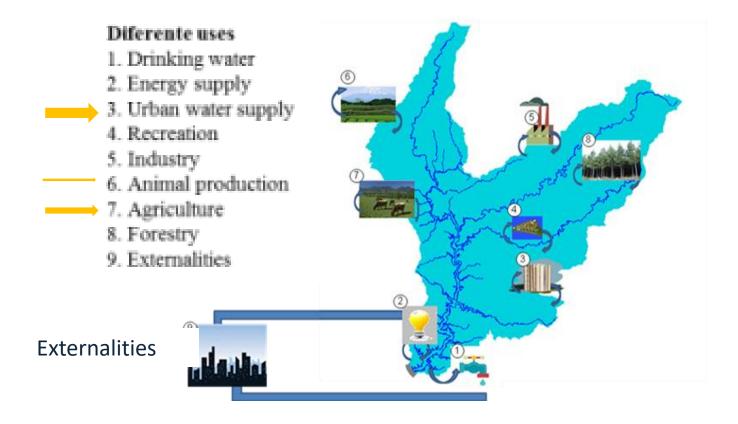

- Integrate different Biogeochemical and water cycles at different scales and in line with human activities C/P
- Monitor water bodies and adjust water monitoring networks in prevening water stress
- Integrate uses and activities related to water use or discharge
- Perform BGQ/W cycles analysis within each activity and sector Urban,
 Agriculture, forestry, industrial ...
- Plan activities considering the BGQ/W Cycles at the watershed scale, using the ecosystems services perspective and water use priorities - assure drinking water assessment to all citizens
- Perform territorial analysis at local, and smaller scales, integrating EU sustainable development perspectives- the relevance of location- in risk analisys.
- Cost and benefit allocation among private or public sector and general population according to C/B criteria

3. Approach - TerAgua Collaborative platform to assure C/B evaluation and water management efficiency

Problem: How to integrate water sustainability and contamination risk prevention Combining BGQ cycles-Water cycle-human activity cycle in order to assure cost benefit efficiency in resources management



4. Using TerAgua to promote efficient management of Castelo do Bode watershed


Drinking water Risk analysis-Integrated perspective

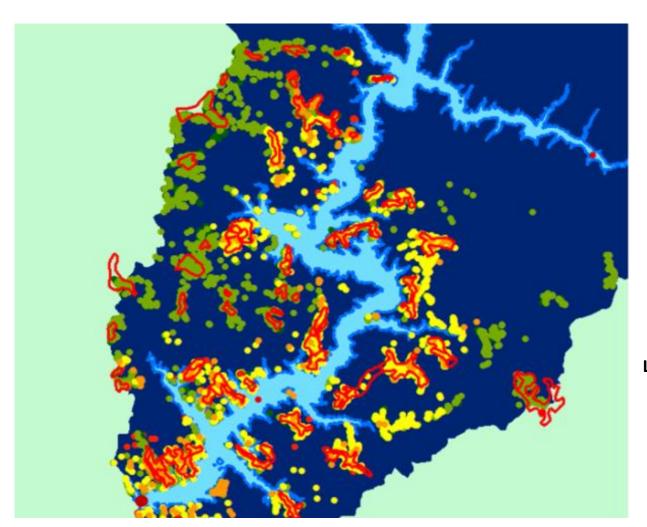
The Castelo do Bode example:

4. Using TerAgua to promote efficient management of Castelo do Bode watershed

Significative anthropogenic related issues:

1. Pressures according to different human activities in the Tagus river watershed (including the west region)

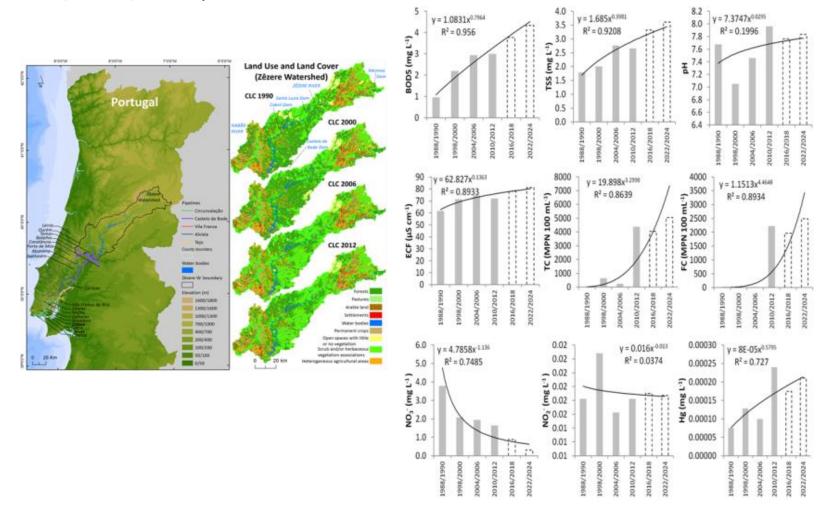
N Discharge estimates – RH5 including Tagus watershed


Setor	Carga rejeitada (Ton/ano)				
	CBO₅	cqo	P _{total}	N _{total}	
Urbano	78 936	43 221	4 038	12 935	
Industrial	21 718	7 776	89	1 297	
Pecuária	22 768	9 088	866	2 526	
Agricultura	-	-	805	6 492	
Golfe	-	-		-	
TOTAL	123 422	60 085	5 798	16 757	

2. Undetected pressures within the water quality monitoring official network: ex. those identified in the NitroPortugal project by Cameira et al, 2019 e 2021.

4. Using TerAgua to prevent water stress and assure water management efficiency: The Castelo do Bode watershed example

Legend:


- Water caption
- Urban area
- Buildings (2010)
- Buildings i(1998)
- Water front
- Watershed delimitation

Urban sprawl evolution and potential N, urban related impact in water quality, (Source: Ter-Agua, Vale et al, 2019)

4. Using TerAgua to promote efficient management of Castelo do Bode watershed

Land cover change and its potential Impact on water quality (Ter-Agua, Bruno M., Vale, M. Reis, R. 2019)

5. Discussion and main conclusion: new insights

The relevance of a TERAGUA- taking advantage of Digital Transformation

- 1. Identify/Understand /prevent water stress problems at local, regional, member state and European scale define priorities- drinking water- assure supply at affordable fair prices
- 2. Integrate territorial analysis, local BGQ cycle, environmental and socioeconomic perspectives- within allocation of resources- C/B
- 3. Improve Water regulations adapt and review- promote effectiveness
- Review and update water monitoring networks adjust sampling stations location, increase benefit/cost ratio
- 5. Identify significative issues, measures to implement considering water stress risk and scarcity. Acting locally
- 6. Being cost effective- Price- sustainability- governance efficiency.... Fair distribution C/B

Work together and dissociate economical growth from the growing pressure over water resources: water abstraction and quality decline.

mathematical facing challenges with innovative approaches promoting C/B EFFICIENCY and effective RESPONSIBLE COOPERATION

Muito obrigada Thank you

Contacts:

Maria Vale: mvale@dgterritorio.pt

